资源类型

期刊论文 70

年份

2023 5

2022 6

2021 4

2020 3

2019 8

2018 5

2017 3

2016 2

2015 5

2014 1

2013 1

2012 1

2011 1

2010 2

2009 4

2008 7

2007 7

2006 1

2005 2

展开 ︾

关键词

三向受力状态 1

上下图模型 1

不等围压 1

云无线接入网;智能反射面;传输波束成形;前传压缩 1

信息处理技术 1

冷起动 1

分形编码 1

力学性能 1

医学图像压缩;高效视频编码(HEVC);质量控制;基于学习方法 1

压缩-扭转性能 1

压缩感知;耦合映像格子(CML);DNA运算;半张量积 1

压缩诱导扭转柔顺机构 1

双燃料 1

反向起爆 1

反应可控压燃 1

变形 1

喷射策略 1

喷油策略 1

图像压缩 1

展开 ︾

检索范围:

排序: 展示方式:

Influence of steel corrosion on axial and eccentric compression behavior of coral aggregate concrete

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1415-1425 doi: 10.1007/s11709-021-0786-9

摘要: To study the behavior of coral aggregate concrete (CAC) column under axial and eccentric compression, the compression behavior of CAC column with different types of steel and initial eccentricity (ei) were tested, and the deformation behavior and ultimate bearing capacity (Nu) were studied. The results showed that as the ei increases, the Nu of CAC column decreases nonlinearly. Besides, the steel corrosion in CAC column is severe, which reduces the steel section and steel strength, and decreases the Nu of CAC column. The durability of CAC structures can be improved by using new organic coated steel. Considering the influence of steel corrosion and interfacial bond deterioration, the calculation models of Nu under axial and eccentric compression were presented.

关键词: coral aggregate concrete column     axial compression     eccentric compression     steel corrosion     calculation model    

Stress-strain relationship of recycled self-compacting concrete filled steel tubular column subjected to eccentriccompression

Feng YU, Cheng QIN, Shilong WANG, Junjie JIANG, Yuan FANG

《结构与土木工程前沿(英文)》 2020年 第14卷 第3期   页码 760-772 doi: 10.1007/s11709-020-0618-3

摘要: As a typical compression member, the concrete-filled steel tube has been widely used in civil engineering structures. However, little research on recycled self-compacting concrete filled circular steel tubular (RSCCFCST) columns subjected to eccentric load was reported. In this study, 21 specimens were designed and experimental studies on the stress-strain relationship of were carried out to study the mechanical behaviors. Recycled coarse aggregate replacement ratio, concrete strength grade, length to diameter ratio and eccentric distance of specimens were considered as the main experimental parameters to carry out eccentric compression tests. The corresponding stress-strain relationship curves were used to analyze the influence of concerned parameters on eccentric load-bearing capacity of RSCCFCST columns. The experimental results show that the strain of the eccentric compression stress-strain curves increase with the increase of recycled coarse aggregate replacement ratio and concrete strength grade. With increase of eccentric distance, the ductility of specimens increases while the bearing capacity decreases. Moreover, a phenomenological model of RSCCFCST columns is proposed, which exhibits versatile ability to capture the process during loading. The present study is expected to further understanding the behaviors and to provide guidance of RSCCFCST columns in design and engineering applications.

关键词: concrete filled circular steel tubular columns     recycled self-compacting concrete     eccentric compression     recycled coarse aggregate replacement ratio     stress-strain relationship    

Model testing of tripod caisson foundations in silty clay subjected to eccentric lateral loads

《结构与土木工程前沿(英文)》 2023年 第17卷 第3期   页码 467-476 doi: 10.1007/s11709-023-0933-6

摘要: In this study, model tests were conducted to investigate the bearing capacities of tripod caisson foundations subjected to eccentric lateral loads in silty clay. Lateral load–rotation curves of five eccentric-shaped tripod suction foundations were plotted to analyze the bearing capacities at different loading angles. It was observed that the loading angle significantly influenced the bearing capacity of the foundations, particularly for eccentric tripod caisson foundations. Compared with eccentric tripod caisson foundations, the traditional tripod foundation has a relatively high ultimate lateral capacity at the omnidirectional loading angle. By analyzing the displacement of the caissons, a formula for the rotational center of the tripod caisson foundation subjected to an eccentric lateral load was derived. The depth of the rotation center was 0.68–0.92 times the height of the caisson when the bearing capacity reached the limit. Under the undrained condition, suction was generated under the lid of the “up-lift” caisson, which helps resist lateral forces from the wind and waves.

关键词: tripod caisson foundation     silty clay     eccentric lateral capacity     model tests    

Variable eccentric distance-based tool path generation for orthogonal turn-milling

Fangyu PENG,Wei WANG,Rong YAN,Xianyin DUAN,Bin LI

《机械工程前沿(英文)》 2015年 第10卷 第4期   页码 352-366 doi: 10.1007/s11465-015-0361-y

摘要:

This study proposes an algorithm for maximizing strip width in orthogonal turn-milling based on variable eccentric distance. The machining error model is first established based on the local cutting profile at the contact line. The influencing factors of the strip width are then investigated to analyze their features and determine an optimizing strategy. The optimized model for maximum machining strip width is formulated by adopting a variable eccentric distance. Hausdorff distance and Fréchet distance are introduced in this study to implement the constraint function of the machining error in the optimized model. The computing procedure is subsequently provided. Simulations and experiments have been conducted to verify the effectiveness of the proposed algorithm.

关键词: orthogonal turn-milling     variable eccentric distance     local cutting profile     machining strip-width maximization    

Behaviors of recycled aggregate concrete-filled steel tubular columns under eccentric loadings

Vivian W. Y. TAM, Jianzhuang XIAO, Sheng LIU, Zixuan CHEN

《结构与土木工程前沿(英文)》 2019年 第13卷 第3期   页码 628-639 doi: 10.1007/s11709-018-0501-7

摘要: The paper investigates the behaviors of recycled aggregate concrete-filled steel tubular (RACFST) columns under eccentric loadings with the incorporation of expansive agents. A total of 16 RACFST columns were tested in this study. The main parameters varied in this study are recycled coarse aggregate replacement percentages (0%, 30%, 50%, 70%, and 100%), expansive agent dosages (0%, 8%, and 15%) and an eccentric distance of compressive load from the center of the column (0 and 40 mm). Experimental results showed that the ultimate stresses of RACFST columns decreased with increasing recycled coarse aggregate replacement percentages but appropriate expansive agent dosages can reduce the decrement; the incorporation of expansive agent decreased the ultimate stresses of RACFST columns but an appropriate dosage can increase the deformation ability. The recycled coarse aggregate replacement percentages have limited influence on the ultimate stresses of the RACFST columns and has more effect than that of the normal aggregate concrete-filled steel tubular columns.

关键词: concrete filled steel tubes     recycled aggregate concrete     columns     expansive agent     eccentric load    

Behavior of dam concrete under biaxial compression-tension and triaxial compression-compression-tension

WANG Huailiang, SONG Yupu

《结构与土木工程前沿(英文)》 2008年 第2卷 第4期   页码 323-328 doi: 10.1007/s11709-008-0043-5

摘要: In order to meet the requirement for nonlinear analysis and design of mass concrete structures, the deformation behavior and strength of three-graded concrete specimens 250 mm × 250 mm × 400 mm with a maximum aggregate size of 80 mm and the corresponding wet-screened concrete specimens 150 mm × 150 mm × 300 mm with a maximum aggregate size of 40 mm were studied experimentally. Specimens subjected to biaxial compression-tension (C-T) and triaxial compression-compression-tension (C-C-T) stress states. Test data indicate that both the deformation and strength of the mass concrete specimens are lower than those of the corresponding wet-screened concrete small specimens, but the initial tangent modulus of the stress-strain curve of the former is greater than that of the latter. Test results show that the wet-screened effect and size effect of the specimens under complex stress states are obvious such that these should be considered in the design of mass concrete structures. In addition, respective failure criteria for mass concrete in principal stress space and octahedron stress space are proposed.

关键词: requirement     wet-screened concrete     compression-tension     maximum aggregate     principal    

Displacement and force analyses of piles in the pile-caisson composite structure under eccentric inclined

《结构与土木工程前沿(英文)》 doi: 10.1007/s11709-023-0957-y

摘要: A novel anchorage for long-span suspension bridges, called pile-caisson composite structures, was recently proposed by the authors in an attempt to reduce the construction period and costs. This study aims to investigate the displacement and force behavior of piles in a pile-caisson composite structure under eccentric inclined loading considering different stratum features. To this end, both 1g model tests and three-dimensional numerical simulations were performed. Two groups of 1g model tests were used to validate the finite-element (FE) method. Parametric studies were then performed to investigate the effects of groundwater level, burial depth of the pile-caisson composite structure, and distribution of soil layers on the performance of the pile-caisson composite structure. The numerical analyses indicated that the influence of the groundwater level on the stability of the caisson was much greater than that of the piles. In addition, increasing the burial depth of the pile-caisson composite structure can assist in reducing the displacements and improving the stability of the pile-caisson composite structure. In addition, the distribution of soil layers can significantly affect the stability of the pile-caisson composite structure, especially the soil layer around the caisson.

关键词: composite structure     piles     foundation     suspension bridge     1g model test     finite-element analysis    

Experimental research on self-stressing and self-compacting concrete filled steel tube columns subjected to eccentric

Chengkui HUANG, Zuoqing SHANG, Peng ZHANG,

《结构与土木工程前沿(英文)》 2009年 第3卷 第4期   页码 455-461 doi: 10.1007/s11709-009-0058-6

摘要: A total of fifteen self-stressing and self-compacting concrete (SSC) filled steel tube columns and three common self-compacting concrete filled steel tube (CFST) columns are tested under eccentric compression load to analyze the effect of initial self-stress on the compression behavior of CFSTs. The results show that the elastic working range of the columns is lengthened because of initial self-stress and it slightly decreases with the increase of load eccentricity ratio and slenderness ratio. Because of the initial self-stress, the concrete core is always under compression in three directions, so the compactness is enhanced and the ultimate bearing capacity obviously increases; but the initial self-stress hardly affects the failure mode of the columns.

关键词: increase     capacity     failure     CFSTs     CFST    

Effects of compression ratio on the combustion characteristics of a homogeneous charge compression ignition

SONG Ruizhi, ZHOU Longbao, LIU Shenghua, LI Wei, HU Tiegang

《能源前沿(英文)》 2007年 第1卷 第4期   页码 463-467 doi: 10.1007/s11708-007-0068-0

摘要: The effects of homogeneous charge compression ignition (HCCI) engine compression ratio on its combustion characteristics were studied experimentally on a modified TY1100 single cylinder engine fueled with dimethyl ether. The resul

关键词: homogeneous     cylinder     combustion     compression     dimethyl    

Numerical study of ignition mechanism of n-heptane direct injection compression-ignition engine

Xiaoping GUO, Zhanjie WANG,

《能源前沿(英文)》 2009年 第3卷 第4期   页码 432-439 doi: 10.1007/s11708-009-0050-9

摘要: A detailed chemical dynamical mechanism of oxidation of n-heptane was implemented into kiva-3 code to study the ignition mechanism of a high-temperature, high-pressure, three-dimensional-space, transient turbulent, non-homogeneous, mono-component fuel in the engine. By testing the quantity of the heat released by the chemical reaction within the cylinder cell, the elementary reaction showing an obvious increase in the cell temperature was defined as ignition reaction and the corresponding cell as ignition position. The main pathway of the ignition reaction was studied by using the reverse deducing method. The result shows that the ignition in the engine can be divided into low-temperature ignition and high-temperature ignition, both of which follow the same rule in releasing heat, called the impulse heat releasing feature. Low-temperature ignition reaction, whose ignition reaction is c5h9o1-4=ch3cho+c3h5-a, follows the oxidation mechanism, while high-temperature ignition reaction, whose ignition reaction is c2h3o1-2=ch3co, follows the decomposition mechanism. No matter which ignition it is in, the chemical reaction that restrains the ignition reaction from lasting is the deoxidization reaction of alkylperoxy radicals.

关键词: compression-ignition engine     ignition mechanism     elementary reaction     n-heptane    

Three-dimensional numerical simulation for plastic injection-compression molding

Yun ZHANG, Wenjie YU, Junjie LIANG, Jianlin LANG, Dequn LI

《机械工程前沿(英文)》 2018年 第13卷 第1期   页码 74-84 doi: 10.1007/s11465-018-0490-1

摘要:

Compared with conventional injection molding, injection-compression molding can mold optical parts with higher precision and lower flow residual stress. However, the melt flow process in a closed cavity becomes more complex because of the moving cavity boundary during compression and the nonlinear problems caused by non-Newtonian polymer melt. In this study, a 3D simulation method was developed for injection-compression molding. In this method, arbitrary Lagrangian-Eulerian was introduced to model the moving-boundary flow problem in the compression stage. The non-Newtonian characteristics and compressibility of the polymer melt were considered. The melt flow and pressure distribution in the cavity were investigated by using the proposed simulation method and compared with those of injection molding. Results reveal that the fountain flow effect becomes significant when the cavity thickness increases during compression. The back flow also plays an important role in the flow pattern and redistribution of cavity pressure. The discrepancy in pressures at different points along the flow path is complicated rather than monotonically decreased in injection molding.

关键词: injection-compression molding     simulation     injection molding     melt flow     cavity pressure    

Improvement of engine performance with high compression ratio based on knock suppression using Miller

Haiqiao WEI, Jie YU, Lei ZHOU

《能源前沿(英文)》 2019年 第13卷 第4期   页码 691-706 doi: 10.1007/s11708-019-0621-3

摘要: In theory, high compression ratio has the potential to improve the thermal efficiency and promote the power output of the SI engine. However, the application of high compression ratio is substantially limited by the knock in practical working process. The objective of this work is to comprehensively investigate the application of high compression ratio on a gasoline engine based on the Miller cycle with boost pressure and split injection. In this work, the specific optimum strategies for CR10 and CR12 were experimentally investigated respectively on a single cylinder DISI engine. It was found that a high level of Miller cycle with a higher boost pressure could be used in CR12 to achieve an effective compression ratio similar to CR10, which could eliminate the knock limits at a high compression ratio and high load. To verify the advantages of the high compression ratio, the fuel economy and power performance of CR10 and CR12 were compared at full and partial loads. The result revealed that, compared with CR10, a similar power performance and a reduced fuel consumption of CR12 at full load could be achieved by using the strong Miller cycle and split injection. At partial load, the conditions of CR12 had very superior fuel economy and power performance compared to those of CR10.

关键词: high compression ratio     knock     Miller cycle     split injection     engine performance    

Efficient controller area network data compression for automobile applications

Yu-jing WU,Jin-Gyun CHUNG

《信息与电子工程前沿(英文)》 2015年 第16卷 第1期   页码 70-78 doi: 10.1631/FITEE.1400136

摘要: Controller area networks (CANs) have been designed for multiplexing communication between electronic control units (ECUs) in vehicles and many high-level industrial control applications. When a CAN bus is overloaded by a large number of ECUs connected to it, both the waiting time and the error probability of the data transmission are increased. Thus, it is desirable to reduce the CAN frame length, since the duration of data transmission is proportional to the frame length. In this paper, we present a CAN message compression method to reduce the CAN frame length. Experimental results indicate that CAN transmission data can be compressed by up to 81.06% with the proposed method. By using an embedded test board, we show that 64-bit engine management system (EMS) CAN data compression can be performed within 0.16 ms; consequently, the proposed algorithm can be successfully used in automobile applications.

关键词: Controller area network (CAN)     Electronic control units (ECUs)     Data compression     Signal rearrangement    

Schedule Compression Impact on Construction Project Safety

Curt Webb,Lu Gao,Ling-guang Song

《工程管理前沿(英文)》 2015年 第2卷 第4期   页码 344-350 doi: 10.15302/J-FEM-2015059

摘要: Many construction projects are met with stringent timelines or the threat of exorbitant liquidated damages. In addition, construction schedulers are frequently forced to incorporate aggressive schedule compression techniques. As already discussed by previous researchers, these schedule compression techniques have direct impacts on project productivity and quality defects. Researchers have also pointed out that schedule compression will affect safety incidents such as Occupational Safety & Health Administration recordable injuries and near misses over long project durations. However, most of the existing studies treated safety as a subcategory of project productivity and project quality, and minimal research has been done to directly quantify the effect of schedule compression on safety at the project level. Therefore, in this research, we conducted a survey and statistical analysis to investigate the relationship between schedule compression and safety in construction projects. We interviewed various members of the Houston construction community from both industrial and non-industrial roles. Statistical analysis was used to identify factors that have significant impacts on the occurrence of safety incidents at an industry specific level.

关键词: construction safety     schedule compression     overtime     work shift     Hurdle model    

Performance analysis of solar absorption-subcooled compression hybrid refrigeration system in subtropical

Xiangyang YE,Liming LIU,Zeyu LI

《能源前沿(英文)》 2019年 第13卷 第1期   页码 185-192 doi: 10.1007/s11708-017-0452-z

摘要: Solar absorption-subcooled compression hybrid refrigeration system is a new type of efficient and economical solar refrigeration device which always meets the demand of cooling load with the change of solar irradiance. The performance of the hybrid system is higher due to the improvement of evaporator temperature of absorption subsystem. But simultaneously, the variation of working process as well as performance is complicated since the absorption and compression subsystems are coupled strongly. Based on the measured meteorological data of Guangzhou, a subtropical city in south China, a corresponding parametric model has been developed for the hybrid refrigeration system, and a program written by Fortran has been used to analyze the performance of the hybrid system under different external conditions. As the condensation temperature ranges from 38°C to 50°C, the working time fraction of the absorption subsystem increases from 75% to 85%. Besides, the energy saving fraction also increases from 5.31% to 6.02%. The average COP of the absorption subsystem is improved from 0.366 to 0.407. However, when the temperature of the absorption increases from 36°C to 48°C, the average COP of hybrid system decreases from 2.703 to 2.312. Moreover, the working time fraction of the absorption subsystem decreases from 80% to 71.7%. The energy saving fraction falls from 5.67% to 5.08%. In addition, when the evaporate temperature increases from 4°C to 14°C, the average COP of the absorption subsystem decreases from 0.384 to 0.365. The work of the compressor decreases from 48.2 kW to 32.8 kW and the corresponding average COP of the absorption subsystem is improved from 2.591 to 3.082.

关键词: solar     absorption-subcooled     compression hybrid     dynamic simulation     performance analysis    

标题 作者 时间 类型 操作

Influence of steel corrosion on axial and eccentric compression behavior of coral aggregate concrete

期刊论文

Stress-strain relationship of recycled self-compacting concrete filled steel tubular column subjected to eccentriccompression

Feng YU, Cheng QIN, Shilong WANG, Junjie JIANG, Yuan FANG

期刊论文

Model testing of tripod caisson foundations in silty clay subjected to eccentric lateral loads

期刊论文

Variable eccentric distance-based tool path generation for orthogonal turn-milling

Fangyu PENG,Wei WANG,Rong YAN,Xianyin DUAN,Bin LI

期刊论文

Behaviors of recycled aggregate concrete-filled steel tubular columns under eccentric loadings

Vivian W. Y. TAM, Jianzhuang XIAO, Sheng LIU, Zixuan CHEN

期刊论文

Behavior of dam concrete under biaxial compression-tension and triaxial compression-compression-tension

WANG Huailiang, SONG Yupu

期刊论文

Displacement and force analyses of piles in the pile-caisson composite structure under eccentric inclined

期刊论文

Experimental research on self-stressing and self-compacting concrete filled steel tube columns subjected to eccentric

Chengkui HUANG, Zuoqing SHANG, Peng ZHANG,

期刊论文

Effects of compression ratio on the combustion characteristics of a homogeneous charge compression ignition

SONG Ruizhi, ZHOU Longbao, LIU Shenghua, LI Wei, HU Tiegang

期刊论文

Numerical study of ignition mechanism of n-heptane direct injection compression-ignition engine

Xiaoping GUO, Zhanjie WANG,

期刊论文

Three-dimensional numerical simulation for plastic injection-compression molding

Yun ZHANG, Wenjie YU, Junjie LIANG, Jianlin LANG, Dequn LI

期刊论文

Improvement of engine performance with high compression ratio based on knock suppression using Miller

Haiqiao WEI, Jie YU, Lei ZHOU

期刊论文

Efficient controller area network data compression for automobile applications

Yu-jing WU,Jin-Gyun CHUNG

期刊论文

Schedule Compression Impact on Construction Project Safety

Curt Webb,Lu Gao,Ling-guang Song

期刊论文

Performance analysis of solar absorption-subcooled compression hybrid refrigeration system in subtropical

Xiangyang YE,Liming LIU,Zeyu LI

期刊论文